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SUMMARY

The present study addresses the capability of a large set of shock-capturing schemes to recover the basic
interactions between acoustic, vorticity and entropy in a direct numerical simulation (DNS) framework.
The basic dispersive and dissipative errors are first evaluated by considering the advection of a Taylor
vortex in a uniform flow. Two transonic cases are also considered. The first one consists of the
interaction between a temperature spot and a weak shock. This test emphasizes the capability of the
schemes to recover the production of vorticity through the baroclinic process. The second one consists of
the interaction of a Taylor vortex with a weak shock, corresponding to the framework of the linear
theory of Ribner. The main process in play here is the production of an acoustic wave. The results
obtained by using essentially non-oscillatory (ENO), total variation diminishing (TVD), compact-TVD
and MUSCL schemes are compared with those obtained by means of a sixth-order accurate Hermitian
scheme, considered as reference. The results are as follows; the ENO schemes agree pretty well with the
reference scheme. The second-order accurate Upwind-TVD scheme exhibits a strong numerical diffusion,
while the MUSCL scheme behavior is very sensitive to the value on the parameter b in the limiter
function minmod. The compact-TVD schemes do not yield improvement over the standard TVD
schemes. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: acoustic wave propagation; CFD; DNS; high-order shock-capturing scheme; vorticity
production

1. INTRODUCTION

Direct numerical simulation (DNS) is a powerful tool for performing fine analysis of flow
dynamics [1] since all the scales of the velocity field are represented in the simulation. The
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quality of the results depends only on the capability of the numerical scheme and the
computational grid to capture the governing dynamical process. While non-dissipative high-
order accurate schemes (spectral, Padé) have been identified as suitable tools for DNS, the
potential value of high-order intrinsically dissipative schemes originally designed to capture
discontinuity remains to be assessed.

The definition of DNS has to be revisited when dealing with shocks. DNS was originally
defined within the framework of incompressible flows, as a simulation representing (i.e.
without any model) all the relevant velocity scales of the flow. The presence of a shock
introduce another length scale, the shock width d, which is much smaller than the smallest
velocity scale in realistic non-rarefied cases. Two families of simulation can then be distin-
guished: the fully resolved simulations (FRS), where all the scales, including the internal
dynamics of the shock, are directly resolved [2], and direct numerical simulations, where only
the scales associated with the velocity field are resolved, while the internal dynamics of the
shock are not represented. The shock is then to be captured by using an ad hoc scheme with
discontinuity-capturing features.

The paper is an attempt to evaluate existing schemes in practical situations. Such an analysis
goes beyond theoretical analysis, and is carried out for almost all the recent high-order
schemes. Hopefully, it should provide benchmark results and guidelines for the development of
improved numerical schemes. The present study is a first step towards full understanding of the
interaction between numerical error and elementary physical mechanisms. It focuses on the
capability of numerical schemes to recover basic interactions between acoustic, vorticity and
entropy, as defined by Kovasznay [3]. Basically, these tests emphasize the errors induced by
performing DNS instead of FRS. The basic dispersive and dissipative errors are evaluated by
considering the advection of a Taylor vortex in a uniform flow, which is an elementary test
case representative of the problem of the conservation of vorticity when simulating far field
wakes. Two transonic cases are also considered. The first one concerns the interaction between
a temperature spot and a weak shock, which enlightens the capability of schemes to recover
the creation of vorticity through the baroclinic process. This process is important when dealing
with the creation of turbulence in a combustion chamber. The second test case concerns the
interaction of a Taylor vortex with a weak shock, corresponding to the framework of the linear
theory of Ribner [4]. The main process in play here is the production of an acoustic wave.

Four classes of shock-capturing schemes are considered: schemes based on total variation
diminishing property (TVD schemes); monotonic upstream scheme for conservation laws
(MUSCL schemes); compact schemes and essentially non oscillatory schemes (ENO schemes).

Governing equations and numerical schemes are presented in Section 2. Results obtained for
the three selected test cases are discussed in Section 3. Conclusions are drawn in Section 4.

2. NUMERICAL APPROACH

2.1. Basic equations

This study is limited to the calculation of two-dimensional free flows. The governing equations
are the unsteady compressible Navier–Stokes equations. Written in Cartesian co-ordinates and
expressed using non-dimensional variables, they read
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where t is the dimensionless time; x and y are the streamwise and the vertical directions
respectively; the solution vector Q is based on the conservative variables; F and G are the
convective fluxes; Fv and Gv stand for the viscous fluxes,

Q=

Æ
Ã
Ã
Ã
È

r

ru
r6

rE

Ç
Ã
Ã
Ã
É

, F=

Æ
Ã
Ã
Ã
È

ru
ru2+P

ru6
ruE+uP

Ç
Ã
Ã
Ã
É

, G=

Æ
Ã
Ã
Ã
È

r6

ru6
r62+P

r6E+6P

Ç
Ã
Ã
Ã
É

Fv=

Æ
Ã
Ã
Ã
È

0
s11

s12

us11+6s12+F1

Ç
Ã
Ã
Ã
É

, Gv=

Æ
Ã
Ã
Ã
È

0
s12

s22

us12+6s22+F2

Ç
Ã
Ã
Ã
É

where r is the density, u, 6 are the velocity components in the x- and y-directions and E is the
total energy per unit of mass. The stress tensor and the heat flux components are given by
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where Sij stands for the strain rate tensor,
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As usual, T and P denote the temperature and the pressure respectively. They are related to

the conservative variables by using an equation of state of a perfect gas
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For the sake of simplicity, the study is restricted to ideal gas with constant specific heat ratio
(g=1.4), constant viscosity coefficient (m=m(T0)) and constant Prandtl number (Pr0=0.7).
The Reynolds number (Re0) is based on the reference values of the density (r0), velocity (V0)
and length scale (L0). M0=V0/(gRT0) is the Mach number (R is the constant of the gas and
T0 is the reference temperature).

2.2. Time integration

To emphasize the differences induced by spatial discretizations, all the calculations have been
performed by using the same time integration procedure. The governing equations (1) are
recast in the following abridged form:

(Q
(t

=L(Q) (6)

The time integration of (6) is performed by means of a third-order accurate TVD Runge–
Kutta method proposed by Shu and Osher [5]
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where Dt is the time step and Qn denotes the vector of the conservative variables evaluated at
time n ·Dt. The main purpose of this study is to compare the numerical error associated with
the numerical treatment of the convective flux, assuming that the time integration error
remains (almost) identical. To this end, all the calculations presented herein have been
obtained by considering only Courant–Friedrich–Lewy (CFL) number=0.5, which corre-
sponds to a nearly optimal value for the considered Runge–Kutta scheme. We checked that
this value ensures a good representation of all the time scales of the flows considered.

2.3. Spatial discretization

In the following, a discrete quantity ( · ) estimated at a grid point xi= i ·Dx, yj= j ·Dy and at
time t=n ·Dt is referred to as ( · )ij

n. Five spatial discretizations, based on high-order accurate
approximations, have been employed.
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2.3.1. Hermitian compact scheme. To obtain reference solutions by performing FRS on refined
meshes, a centered sixth-order accurate Hermitian compact scheme is used. The first-order
derivatives (F %=(F/(x) of a function (F) are estimated using the following relation:

b(F %i−2+F %i+2)+a(F %i−1+F %i+1)+F %i

=
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6 ·Dx
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b
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For sixth-order accuracy, the values of the constants are
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On the boundaries, the following third-order accurate upwind scheme is used to preserve the
tridiagonal structure of the implicit operator:
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For the second-order derivatives ( f ¦=(2f/(x2), a similar scheme is applied
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The sixth-order accuracy is achieved using
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On the boundaries, a third-order accurate upwind scheme is employed

f ¦1+11f ¦2=
1

Dx2 (13f1−27f2+15f3− f4) (11)

The governing equations (1) are solved by applying these one-dimensional schemes (8)–(11)
in each direction. The resulting tri-diagonal systems are solved directly, using the Thomas
algorithm by means of an LU factorization.
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2.3.2. Upwind TVD scheme. Let us consider first an explicit upwind TVD scheme for the
discretization of Equation (1)
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The discretization of the convective terms is based on a Roe’s approximate Riemann solver [6],
together with an upwind TVD scheme, developed by Harten [7] and Yee [8]. The numerical
flux F( i+1/2, j is expressed as
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) (13)
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is a 4×4 matrix. To ensure that the scheme is a second-order accurate upwind

TVD scheme, the fxi+1/2, j
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eigenvector matrices of the Jacobian of the Euler flux ((F/(Q) respectively. The parameter
gxi+1/2, j

, given by

gxi+1/2, j
=

1
2

�axi+1/2, j

l �
Á
Ã
Í
Ã
Ä

(gxi+1, j
−gxi, j

)
axi+1/2, j

if axi+1/2, j
"0

0 if axi+1/2, j
=0

Note that, contrary to the original scheme, no entropic parameter is used as we look for
unsteady solutions of the equations. The limiter that gives a second-order accurate TVD
scheme is the classic Van-Leer Harmonic function [10]
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To estimate the values at the mid-point (i+1/2, j ) and to ensure that the numerical flux (F( )
is consistent with F, the classic mass-weighted average is introduced by Roe [6]. The numerical
flux (G( i, j+1/2

n ) in the y-direction is expressed following the same formulation as in the
x-direction.

The diffusive fluxes (F( v and G( v) are discretized using a second-order accurate differencing
scheme.

2.3.3. Compact TVDM scheme. To increase the order of accuracy of the previous scheme, a
compact shock-capturing scheme, based on TVD in mean (TVDM) approximation was
implemented, as proposed by Yee [11]
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where, to ensure fourth-order accuracy, the coefficients of the Hermitian matrices (Ax and Ay)
are
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In this TVDM compact scheme, the numerical Euler fluxes F( i+1/2, j and G( i, j+1/2 are
estimated using the previous TVD approach (13). The diffusive fluxes F( vi+1/2, j

and G( vi, j+1/2

involve spatial derivatives of velocity that have been estimated also by a fourth-order accurate
compact scheme, written at the mid-point, using for instance
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where matrix (Ax) is defined by Equation (17).

2.3.4. MUSCL-TVD scheme. The convective numerical flux functions F( i+1/2, j and G( i, j+1/2 are
also estimated using a MUSCL approach, based on an approximate Riemann solver. Using
the local characteristic approach [12], the upwind MUSCL scheme reads

F( i+1/2, j=
1
2

(F(Qi+1/2, j
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L )−Rxi+1/2, j
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Spurious oscillations are eliminated by using a ‘slope’ limiter applied to the conservative
variables (Q)
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R =Qi+1, j−

1
4
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In the present calculations, a minmod ‘slope’ limiter was used together with h=1
3, leading to

the definition of a third-order accurate upwind-biased scheme

D0 i+1/2=minmod(Di+1/2, bDi−1/2) (23)

D00 i+3/2=minmod(Di+1/2, bDi+3/2) (24)

where Di+1/2=Qi+1, j−Qi, j and minmod(p, q)=sign(p) ·max{0, min[�p �, q sign(p)]}.
Two extreme values of the b coefficient have been considered: b=1, giving the most

diffusive MUSCL scheme, and b=4 giving the most compressive one. The elements of the
matrix Fxi+1/2, j

are written [12]
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by using the Roe average between states Qi+1/2, j
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L .

2.3.5. ENO schemes. Finally, ENO schemes have been employed to evaluate the Euler fluxes
[5,13]. The ENO reconstruction is applied to the local characteristic variables. The Euler fluxes
(in each direction) are projected onto the left eigenvectors matrices Lxi+1/2, j

and Lyi, j+1/2
of

((F/(Q)i+1/2, j and ((G/(Q)i, j+1/2 respectively. The scalar ENO reconstruction procedure is
applied to the projected fluxes [13]. The numerical Euler fluxes are obtained in the physical
domain by a projection onto the right eigenvectors Rxi+1/2, j

and Ryi+1/2, j
. The numerical Euler

fluxes finally read
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The eigenvectors matrices (L and R) are evaluated using the Roe average.
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The generic ENO scheme
The ENO reconstruction procedure [13] is employed to choose the most regular stencil among
the r+1 candidates (r is the order of the ENO reconstruction). After selecting the r upwind
stencils using the sign of the eigenvalues (axi+1/2, j

l , ayi, j+1/2

l ) of ((F/(Q)i+1/2, j, ((G/(Q)i, j+1/2

respectively, the undivided difference table of the Euler fluxes is constructed to chose the most
regular stencil. The z coefficients are calculated to approximate the polynomial extrapolation
[13] of order r=2m+1

f( i+1/2= fi+1/2+ %
m

p=1

Dx2pa2p

(2p

(x2p ( fi+1/2)+O(Dx)2m+1 (28)

f( i+1/2= %
r−1

q=0

zq
r fq (29)

The values of z l
r can be found in Shu [14].

Using this generic ENO scheme (26), the Euler fluxes derivatives are estimated with r-order
of accuracy at best.

Modified ENO scheme (MENO)
Whenever the stencil used to evaluate f( i+1/2 is different to the stencil used to evaluate f( i−1/2 the
order of accuracy decreases to r−1. This drawback is limited to the modified ENO (MENO)
schemes [15] since these schemes select automatically the most centered stencil in smooth
regions for both f( i+1/2 and f( i−1/2.

Weighted ENO scheme (WENO)
The generic ENO scheme needs to choose between r candidate stencils. The principle of the
weighted ENO scheme is to improve the order of accuracy by using a weighted combination
of the r possible stencils. The weights [16] depend on the degree of regularity of the solution.
In regular regions, they can be computed to achieve (2r−1)th-order of accuracy, whereas in
regions with discontinuities they are set to zero, leading to a standard ENO scheme. The
WENO fluxes are estimated by

F( i+1/2, j= %
r−1

k=0

vkqk
r (Fi+k−r+1, j, . . . , Fi+k, j) (30)

G( i, j+1/2= %
r−1

k=0

vkqk
r (Gi, j+k−r+1, . . . , Fi, j+k) (31)

where qk
r stands for the ENO reconstruction of the Euler fluxes for the kth stencil,

qk
r ( fi+k−r+1, . . . , fi+k)= %

r−1

p=0

zk,p
r fp (32)

and vk are the weights defined as follows:
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%
r−1

k=0

vk=1 (33)

vk=
bk

%
r−1

p=0

bp

(34)

bk=
Ck

r

(o+ISk)2 (35)

o is a small positive number to avoid the denominator being zero (hereafter we set o=
10−6) and ISk is a measure of the flux function regularity for the kth candidate stencil.
The evaluation of the smoothness measurement (ISk) is based on the undivided differences
[16].

The Ck
r coefficients can be found in Reference [17] up to r=4.

For all these ENO schemes, the diffusion terms are discretized by means of a second-or-
der accurate central differencing scheme.

3. RESULTS AND DISCUSSION

The simulations have been performed by using the following seven numerical schemes:

� A sixth-order accurate Hermitian scheme (referred to as Hermit 6)
� A second-order accurate upwind TVD scheme using a Van-Leer harmonic limiter func-

tion, based on a Roe–Riemann solver (referred to as TVD-HY 2)
� A third-order accurate MUSCL-TVD scheme using a minmod limiter function, based on

a Roe–Riemann solver (referred to as MUSCL 3)
� A fourth-order accurate compact TVDM scheme using a Van-Leer harmonic limiter

function, based on a Roe–Riemann solver (referred to as CP-TVDM 4).
� A third-order accurate ENO scheme, based on a Roe–Riemann solver (referred to as

ENO 3).
� A fourth-order accurate ENO scheme, based on a Roe–Riemann solver (referred to as

MENO 4)
� A fifth-order accurate WENO scheme, based on a Roe–Riemann solver (referred to as

WENO 5)

Note that for each scheme, the accuracy order we have reported is the best they can
achieve.

3.1. Ad6ection of a 6ortex

In the present test case our goal is to evaluate the diffusive or dispersive property of each
scheme. All calculations have been performed on the same configuration with the same
initial data.
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3.1.1. Flow configuration. The physical domain is the square [0, L0]× [0, L0]. By using L0 a as
reference length scale, the computations are performed on the dimensionless domain [0, 1]×
[0, 1]. An isolated Taylor vortex is initially superimposed to a uniform flow with a Mach
number M0=0.8 and a Reynolds number Re=104. The tangential velocity is given by

Vu(r)=C1r ·e−C2r2

(36)

with

C1=
Uc

rc

e1/2, C2=
1

2rc
2 , r=
(x−x0)2+ (y−y0)2

We set rc=0.075 and Uc=0.3. Following these values, the radius of the viscous core is 1
2. The

initial position of the vortex center is x0=
1
2, y0=

1
2.

Periodic boundary conditions are applied in both directions (x, y). Two uniform grids are
employed: a coarse grid with 100×100 points and a fine one with 200×200 points. The CFL
number is set to 0.5, corresponding to a dimensionless time step Dt=1×10−3 on the fine grid
and Dt=2×10−3 on the coarse grid.

3.1.2. Results. The simulation is performed over a dimensionless time t=5, corresponding to
the advection of the vortex over five length scales (L0). The conservative quantities are
recorded at each integer time (t=1, 2, 3, 4, 5) when the center of the vortex coincides with the
center of the domain owing to the periodic boundary condition.

Owing to the effects of both molecular viscosity and numerical diffusion, the radius of the
viscous core is a growing function of time. This is illustrated in Figure 1, where the distribution
of the vertical component (6) of the velocity on the centerline of the domain (y=1

2) at a
dimensionless time t=5 is compared with the initial distribution. This effect can also be seen
on the longitudinal distribution of the static pressure (P) at a dimensionless time t=5 on the
centerline of the domain (y=1

2) (Figure 2). The pressure defect is located at the center of the
vortex. The more dissipative the scheme the less important the pressure defect (Figure 2).

The results obtained by using the sixth-order accurate Hermitian scheme (Hermit 6) on the
fine grid (200×200) are taken as the reference values. Note in Figures 1 and 2 that, on the fine
grid, the shock-capturing schemes give results in good agreement with the Hermit-6, except
MUSCL-3 using b=1, which exhibits large discrepancies. Even though this scheme is a
‘biased’ third-order accurate scheme, it gives the most important numerical diffusion. Improve-
ments are obtained by using b=4. Nevertheless, all the shock-capturing schemes exhibit large
discrepancies on the coarse grid when compared with the Hermit-6 results (Figures 1 and 2).
Moreover, note on Figures 1 and 2 that, owing to the upwinding, the distributions of both 6
and P obtained by means of the TVD schemes are not symmetric with respect to the abscissa
x0=

1
2.

To get a finer analysis of the capability of each scheme to reproduce the vortex advection,
we make a zoom around the maximum of 6 at a dimensionless time t=5 (Figures 3 and 4).
The sixth-order accurate Hermitian scheme (Hermit-6) is not sensitive to the mesh refinement
since the differences are less than 0.1 per cent between both grids (see Figures 3 and 4). The
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Figure 1. Advection of a vortex (Re=104, M0=0.8): vertical velocity (6) at t=5 as a function of x on
line y=1

2. (a) TVD schemes on the coarse grid (100×100); (b) TVD schemes on the fine grid (200×200);
(c) ENO schemes on the coarse grid (100×100); (d) ENO schemes on the fine grid (200×200).

distributions calculated using shock-capturing schemes are compared with the Hermit-6 results
in Figures 3 and 4. The results of MUSCL-3 with b=1 (MUSCL3(MI1)) have not been
plotted since its numerical diffusion is too important.

The TVD-HY scheme using the Van-Leer Harmonic limiter function gives large differences
compared with the Hermit-6 results due to the numerical diffusion, especially on the coarse
grid (Figures 1(left), 2(left), 3(a) and 4(a)). Results on the fine grid are in closer agreement with
the Hermit-6 distribution (Figures 1(right), 2(right), 3(b) and 4(b)). Compact TVDM-4 (VL)
exhibits a disappointing behavior since it is comparable with the second-order Upwind-TVD
and no improvement is observed using the compact approach on both grids (Figures 1; 3(a)
and (b), 2; and 4(a) and (b)). This behavior is attributed to the limiter function, which
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Figure 2. Advection of a vortex (Re=104, M0=0.8): static pressure (P) at t=5 as a function of x on
line y=1

2. (a) TVD schemes on the coarse gird (100×100); (b) TVD schemes on the fine grid (200×200);
(c) ENO schemes on the coarse grid (100×100); (d) ENO schemes on the fine grid (200×200).

decreases by 1 the order of accuracy of the Euler fluxes in the right-hand side of (16). Then,
the resulting compact scheme is no longer fourth-order accurate in space. Additional tests (not
shown here) have been performed using the compact approach applied to a centered scheme,
to evaluate the right-hand side of (16), leading to results very similar to those of the Hermit-6
scheme. This confirms the role played by the limiter function. MUSCL-3, using a minmod
limiter function with b=4 (MI4), gives results in better agreement with the reference values
than the basic TVD-HY scheme (Figures 1; 3(a) and (b), 2; and 4(a) and (b)). The
MUSCL-3(MI4) results are comparable with those obtained by means of the basic ENO-3
scheme. Both schemes exhibit slightly diffusive behavior (Figures 1; 3, 2; and 4). Improvements
have been obtained by using modified and weighted ENO schemes (MENO-4 and WENO-5)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 249–278
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Figure 3. Zoom around the center of the vortex at a dimensionless time t=5 of the longitudinal
distribution (along the line y=1

2) of the vertical velocity (6). (a) TVD schemes on the coarse grid
(100×100); (b) TVD schemes on the fine grid (200×200); (c) ENO schemes on the coarse grid

(100×100); (d) ENO schemes on the fine grid (200×200).

(Figures 3(c) and (d), and 4(c) and (d)). The MENO-4 scheme seems to exhibit some
anti-diffusive behavior, since the maximum of 6 is overestimated and, consequently, the
minimum of pressure is underestimated (Figures 3(c) and (d) and 4(c) and (d)). The best
agreement with the reference is provided by the WENO-5 scheme. Nevertheless, this scheme
exhibits also a slight anti-diffusive behavior, mainly on the coarse grid (Figures 3(c) and (d)
and 4(c) and (d)). However, this trend is less important than for the MENO-4 scheme.

The comparisons between the seven numerical schemes are now performed on the time
evolution of the maximum (over the computational domain) of the vertical velocity (6) and the
minimum of the pressure (P), when the center of the vortex coincides with the center of the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 249–278
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Figure 4. Zoom around the center of the vortex at t=5 of the longitudinal distribution (along the line
y=1

2) of the the static pressure (P). (a) TVD schemes on the coarse grid (100×100); (b) TVD schemes
on the fine grid (200×200); (c) ENO schemes on the coarse grid (100×100); (d) ENO schemes on the

fine grid (200×200).

domain (i.e. t=1, 2, 3, 4, 5). The maximum of 6 and the minimum of P, on both the fine
(200×200) and the coarse (100×100) grids are presented in Tables I and II respectively.
Relative errors with respect to the Hermitian scheme on the finer grid are also given.

The sixth-order accurate Hermitian scheme (Hermit-6) is not sensitive to the mesh refine-
ment since the maximum in time of the error on the coarse grid, compared with the fine grid,
is less than 0.1 per cent for the maximum of 6 and less than 0.5 per cent for the minimum of
P (Tables I and II). The most diffusive scheme is the biased third-order accurate MUSCL
scheme using b=1, which gives a maximum error up to 43 per cent for the maximum of 6 on
the coarse grid (Table I). Large improvements are obtained using the coefficient value b=4

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 249–278
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since the maximum error is reduced to less than 8 per cent on the coarse grid and about 1 per
cent on the fine grid (Table I). The TVD-HY-2 and the Compact TVDM-4 schemes give
comparable results. These schemes exhibit important errors on the coarse grid. TVD schemes
are sensitive to grid refinement since these errors are greatly reduced on the fine grid. This grid
sensitivity may come from the Van-Leer Harmonic limiter function, which overpredicts the
limitation on the Euler fluxes on the coarse grid.

ENO schemes lead to very low error level when compared with TVD schemes. The ENO-3
scheme on the coarse grid gives a maximum error close to 5 per cent. This error decreases to
less than 1 per cent as the resolution increases. On the fine grid, ENO-3 and MUSCL-3(MI4)
give comparable results, while the ENO-3 scheme behaves slightly better on the coarse grid.
The MENO approach improves the results on the coarse grid whereas an error level similar to
that of the generic ENO is found on the fine mesh. The computational time is equivalent for
both approaches. The WENO-5 scheme provides results in very good agreement with the
Hermitian scheme on both grids (see Tables I and II).

These results demonstrate that the convection of an isolated vortex is satisfactorily predicted
using a shock-capturing scheme that is at least third-order accurate in space. The best results
are provided by the WENO scheme with a computational time comparable with that of the
generic ENO scheme.

3.2. Interaction between a weak shock and a spot of temperature

The goal of this section is to investigate the capability of shock-capturing schemes to predict
correctly the mechanisms of vorticity production during the interaction of travelling pressure
waves (or shocks) with inhomogeneities of the flow [9] induced by baroclinic effects. Recall
that only baroclinic effects are capable of producing vorticity in two-dimensional in viscid
flows. This configuration is a basic model for the interaction of a shock with a flame. As the
classical approach that is based on the linear theory of the Rayleigh–Taylor instabilities
cannot take into account the non-linear mechanisms [18], DNS emerges as an attractive
alternative to understanding the mechanisms of vorticity production.

The baroclinic production term reads

−
1

r2 9P×9r (37)

3.2.1. Flow configuration. The flow configuration is the one studied by Pernaud-Thomas [19] in
his PhD thesis. The domain has a dimension 2L0×L0, where L0 is chosen as the reference
length scale. The dimensionless computational domain (V) is [0, 2]× [0, 1]. The plane weak
shock is located at x0=1. The prescribed pressure jump through the shock is DP/P�=0.4,
where P� is the static pressure at infinity, corresponding to a reference Mach number
M0=1.1588. The flow is initialized by using the Rankine–Hugoniot relationships. The
Reynolds number, based on the reference length scale (L0), density (r0) and velocity (V0), is
Re=2000. The reference density and velocity are those of the free uniform flow at infinity.
Initially, the spot of temperature is superimposed to the base flow and is located upstream of
the shock (see Figure 5). The spot of temperature is defined as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 249–278
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Figure 5. Computational domain, boundary conditions and initial density field.

DT(r)
T0

=
1
a4 (r2−a2)2 e−r2/s2

(38)

with a=7, s=0.07, and where r=
(x−x0)2+ (y−y0)2 and x0=
1
2, y0=

1
2 are the co-ordi-

nates of the initial location of the center of the spot. The perturbation of temperature is
supposed to be isobaric.

On the upstream boundary (x=0), as the inflow is supersonic all the conservative quantities
are prescribed. On the outflow boundary (x=2) we proceed as follows:

� for the TVD and MUSCL schemes, the governing equations are projected onto the
characteristic directions and non-reflecting conditions are applied in the streamwise
direction.

� for the ENO schemes, ghost cells are added, on which the condition (/(x=0 is prescribed
to conserve the order of accuracy of the scheme.

� for the Hermitian scheme, first order extrapolations of the conservative variables are
employed.

Periodic boundary conditions are applied on the upper and lower boundaries. Two uniform
grids are used: a coarse grid with 101×51 points (Dx=Dy=0.02) and a fine grid with
201×101 points (Dx=Dy=0.01). To obtain a reference solution, a FRS calculation was
performed on a very fine grid (801×101), using the Hermit-6 scheme (as in Reference [2]),
with about ten points within the shock wave.

The calculations have been performed over a dimensionless time equal to 1, using a Courant
number CFL=0.5, corresponding to a dimensionless time step equal to Dt=4×10−3 on the
coarse grid and Dt=2×10−3 on the fine grid.

3.2.2. Results. As the spot of temperature is convected through the shock, the sum over the
computational domain (V) of the modulus of both the vorticity and the baroclinic torque (37)
are computed
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&
V

�v � dV (39)

&
V

)9P×9r

r2

)
dV (40)

We first present the reference solution obtained by means of the sixth-order accurate
Hermitian scheme. The time histories of the integral quantities (39) and (40) are plotted in
Figures 6 and 7. At the initial time (t=0), the vorticity and the baroclinic torque are zero
(Figures 6 and 7). At a dimensionless time t=0.3, the temperature spot starts to interact with
the shock wave (Figures 6 and 7). The maximum of the production of vorticity occurs at about
t=0.5 when the center of the temperature spot coincides with the shock location. The
isovalues of the density and pressure (Figure 8) show a modification in the curvature of the
shock. The vorticity is produced within and just downstream the shock (Figure 8); the final
product being a pair of counterrotating vortices. Since the initial temperature distribution is
symmetric, the vorticity field is anti-symmetric with respect to the centerline y=1

2 of the
domain. Low-pressure structures associated with these vortices are visible in Figure 8. As the
spot is convected downstream of the weak shock, the intensity of the baroclinic torque
decreases rapidly (Figure 7). At t=1, the temperature spot is located close to x=1.4 but still
interacts with the shock as shown in (Figure 9) as the shock is bent. The production of

Figure 6. Time history of the integral over the computational domain of �v � obtained by different
schemes on the fine grid (201×101).
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Figure 7. Time history of the integral over the computational domain of the baroclinic torque obtained
by different schemes on the fine grid (201×101).

vorticity keeps a residual value at the final time of the computation (Figure 7). The vorticity
is concentrated in two counterrotating vortices and no vorticity is present within the shock
(Figure 10(left)).

To study the ability of each shock-capturing scheme considered herein to correctly predict
the vorticity production mechanism, comparisons on the maximum of vorticity in the domain
at t=1 (Table III) are performed. The maximum of vorticity is located in the center of one of
the counterrotating vortices. The relative errors are calculated by using the Hermit-6 scheme
as reference. The TVD schemes (TVD-HY and CP-TVDM) underestimate the maximum of
vorticity (3), owing to large numerical dissipation. Both TVD schemes exhibit significant errors
on the maximum of v on the coarse grid, while the results are improved on the fine grid since
the errors are less than 4 per cent. MUSCL-3 and ENO-3 exhibit similar behaviors. Surpris-
ingly good agreements with the Hermit-6 results are obtained on the fine grid while important
discrepancies occur on the coarse grid. The highest order ENO schemes (MENO and WENO)
give good results. They are less sensitive to the grid refinement than TVD schemes since the
errors are of the same of order of magnitude on both grids. However, the overestimation of the
vorticity maximum may be explained by a slight antidiffusive behavior.

Comparisons are also performed on the time evolution of the integral quantities (39) and
(40). To perform accurate comparisons, zooms are provided in Figures 11 and 12. All the
schemes produce vorticity at the beginning of the calculation (Figure 11(left)) since the initial
shock solution, prescribed by using the Rankine–Hugoniot relations (over one grid point),
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Figure 8. Interaction of a weak shock with a spot of temperature at t=0.5: isocontours of the density
(upper-left, 21 contours from 0.6 to 1.29), the pressure (upper right, 21 contours from 0.53 to 0.75) and

the vorticity (lower-left, 20 contours from −1 to +1).

does not satisfy the Navier–Stokes equations. However, the more diffusive the scheme the
greater the vorticity produced (Figure 11(left)). MUSCL-3 with b=4 exhibits an anomalous
behavior since the interaction starts earlier than for the other schemes (Figure 11(left)) and a
large amount of vorticity is still being produced after the end of the interaction (Figure 6). This
vorticity is produced by small spurious oscillations occurring just behind the shock. This must

Figure 9. Interaction of a weak shock with a spot of temperature at t=1.0: isocontours of the density
(left, 21 contours from 0.6 to 1.29), the pressure (upper-right, 21 contours from 0.53 to 0.75).
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Figure 10. Interaction of a weak shock with a spot temperature at t=1.0: isocontours of the vorticity (20
contours from −1 to +1), obtained both from the Hermit-6 schemes (left) and the WENO scheme

(right).

be attributed to a numerical artifact due to the compressive behavior of the Minmod (b=4)
limiter, since using b=1 this scheme behaves like the other schemes with, however, an important
numerical diffusion. All the other shock-capturing schemes (TVD and ENO schemes) overpredict
the integral of the velocity (Figure 11(right)) at the end of the interaction. This overprediction
is related to the generation of vorticity within the shock, which persist until the end of the
computation (see for instance, for the WENO scheme, Figure 10(right)). As mentioned above,
no noticeable spurious vorticity is produced at t=1 by using the Hermit-6 scheme (Figure
10(left)). The overprediction of vorticity is more important by using the ENO schemes (ENO
and WENO) then by using the TVD schemes (TVD-HY and CP-TVDM). This is in agreement
with the production of vorticity through baroclinic effect since the ENO schemes production
is greater than the one estimated by using the TVD schemes (Figure 12). These residual
discrepancies may be attributed to numerical diffusion specific to each scheme; the greater the
numerical diffusion the smaller the integral of the vorticity modulus.

Table III. Maximum of the vorticity provided with the different schemes in the
computational domain, at t=1.

Schemes Maximum of v Error (%)

Hermit-6 (801×101) 1.04558 0.0
−21.660.819093TVD-HY-2 (101×51)

TVD-HY-2 (201×101) 1.01143 −3.27
MUSCL-3 (101×51) 0.92405 −11.62

0.011.04571MUSCL-3 (201×101)
CP-TVDM-4 (101×51) 0.809734 −22.56
CP-TVDM-4 (201×101) 1.00509 −3.87
ENO-3 (101×51) 0.98945 −5.37
ENO-3 (201×101) 1.04432 −0.12
MENO-4 (101×51) −1.571.02913
MENO-4 (201×101) 1.05081 0.50

1.701.06334WENO-5 (101×51)
WENO-5 (201×101) 1.001.05608
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Figure 11. Zooms of the time history of the Lnorm
1 of �v � obtained by different schemes on the fine grid

(201×101).

As the initial data does not satisfy the Navier–Stokes equations, the Hermit-6 scheme yields
an oscillating solution during the first time steps. The weak shock is slightly shifted upstream
by a diffusion process. This explains why the maximum of production obtained by this scheme
occurs a little bit earlier than for the shock-capturing schemes (Figure 12). In fact, all the

Figure 12. Zoom of the time history of the integral of the vorticity production obtained by different
schemes on the fine grid (201×101).
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shock-capturing schemes agree on the time of the maximum of production. Though they
underestimate the production of vorticity through baroclinic effect (Figure 12). They are also
sensitive to grid refinement. The best agreement with the Hermit-6 results is obtained by means
of WENO-5 on the fine grid, the error on the maximum of vorticity production being of about
5 per cent (Figure 12).

Finally, the integral of the vorticity over the computational domain is calculated at each
time step

&
V

v dV

Since no vorticity is prescribed at the initial time this integral must be zero during the
computation. The lowest values, close to computer double-precision and less than 10−15, are
given by WENO on the fine grid. These values are lower than those provided by Hermit-6 on
the very fine grid. We underline that these values are not sensitive to grid refinement.
TVD-HY-2 and ENO-3 on the coarse grid, yield the greatest values (10−9), whereas on the
fine grid, these values are almost one order of magnitude lower.

In conclusion, it is observed that all the shock-capturing schemes underestimate the
production of vorticity by baroclinic effect. They produce an excess of vorticity within the
shock even if the temperature spot is far downstream of the shock. The best results are
provided by the ENO schemes (WENO-5 and MENO-4) on the fine grid with the same
computational cost as the generic ENO scheme. Moreover, WENO and MENO do not exhibit
great grid sensitivity on such a flow configuration.

3.3. Two-dimensional shock–6ortex interaction

The last test case is tailored to investigate the capability of the shock-capturing schemes to
predict the generation and the transport of acoustic waves during a shock–vortex interaction.
The study is restricted to the interaction of a plane weak shock with a single isentropic vortex.
The intensity of the vortex is weak enough to ensure that we deal with low shock deformations
during the interaction so that the linear theory introduced by Ribner [4] can be applied.

3.3.1. Flow configuration. A squared domain 2L0×2L0 is considered (where L0 is taken as the
reference length scale hereafter). The dimensionless computational domain is [0, 2]× [0, 2]. A
stationary plane weak shock is located at x0=1, with the same pressure jump as in the
previous test case. The flow is initialized using the Rankine–Hugoniot relationships. The
Reynolds number based on the velocity of the uniform flow is equal to Re=2000. The same
vortex as in Section 3.1 is superimposed to the base flow. The initial position of the vortex
center is x0=

1
2, y0=1. The computations are performed with rc=0.075 and Uc=0.25. As a

result, the radius of the viscous core is 1
2.

The boundary conditions are the same as for the interaction of the shock with the
temperature spot (see Section 3.2). Two uniform grids are employed; a coarse grid with
101×101 points (Dx=Dy=0.01). To obtain a reference solution, a FRS computation is
performed on a very fine uniform grid (801×501) using the Hermit-6. The calculations are
performed using a Courant number CFL=0.5, corresponding to a dimensionless time step
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equal to Dt=4×10−3 on the coarse grid and Dt=2×10−1 on the fine grid. The final
dirnensionless time of the computations is 0.7.

3.3.2. Results. At the beginning of the shock–vortex interaction (t=0.3) a circular acoustic
wave propagating at the speed of sound is generated. This wave is clearly, seen in Figure 13,
where we have plotted the static pressure obtained by WENO-5 at t=0.7 on the fine mesh.
Note that the vortex located just behind the shock has an elliptic shape whose main axis is
parallel to the shock, in agreement with the prediction of the rapid distorsion theory.

The circumferential pressure profile along the acoustic wave is compared with the analytical
prediction of Ribner [4]

P(u)=0.0206 sin(2u)−0.0072 cos(2u)−0.0045 sin(u)−0.0023 cos(u)+0.0063 (41)

where u is the angle along the circular acoustic in defined in Figure 14.
For all the selected schemes, the amplitude of the pressure along the acoustic wave is about

15 times lower than that of the Ribner theory (41). This can be attributed mainly to the viscous
effects, which are not taken into account in the inviscid theory of Ribner. To compare the
numerical results with the analytical solution, the pressure values are shifted so that the
Hermit-6 pressure value coincides with the Ribner pressure at u=0. Moreover, the magnitudes
of the corrected pressure fields, for all the numerical results, have been adjusted to fit the
Ribner theory amplitude using the same rescaling. Once rescaled, the results of the Hermit-6,

Figure 13. Two-dimensional shock–vortex interaction: isocontours of the static pressure (25 contours
from 0.527 to 0.845), obtained at t=0.7 using as WENO-5 scheme on the fine grid (201×201).
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Figure 14. Sketch of the two-dimensional shock–vortex interaction: definition of the angle u.

ENO, MENO and WENO are compared with that of the Ribner theory in Figure 15 for both
grids

The results obtained by Hermit-6 on the very fine grid (801×501) are in good qualitative
agreement with the Ribner theory (Figure 15), modulo a very low phase error. The location of
the center of the acoustic wave (center of the vortex) and the wave radius are deduced from
the Hermit-6 results at t=0.7. For all the shock-capturing schemes, the circumferential

Figure 15. Comparison with the Ribner theory on the circumferential pressure profiles provided with the
Hermit-6, MENO and WENO schemes on the coarse grid (101×101) (left) and the fine grid (201×201)

(right).
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pressure values have been calculated using these two parameters. On the fine grid, ENO-3 and
WENO-5 yield results (Figure 15(right)) that are in good agreement with Hermit-6; though
they exhibit a slight lagging error at positive angles. MENO-4 exhibits more discrepancies with
Herrnit-6 than WENO-5. The MENO scheme underestimates the pressure at positive angles
and largely overestimates the pressure at negative angles (Figure 15(right)). This may be
attributed to the compressive behavior of MENO-4. ENO and MENO yield more discrepan-
cies and lagging errors on the coarse grid (Figure 15(left)) than on the fine one. The best result
is obtained by WENO-5 since it is the less sensitive to grid refinement and is on good
qualitative agreement with the Ribner theory.

Since TVD and MUSCL schemes exhibit diffusive behavior, the pressure values computed
by these schemes are about 3 per cent lower than those calculated by ENO schemes. To make
comparisons with the Ribner theory (41), the pressure values have been corrected so that the
TVD-HY pressure value coincides with the Ribner pressure at u=0. The rescaled results,
given by TVD and MUSCL schemes are compared with the Ribner theory in Figure 16.
CP-TVDM and TVD schemes yield similar results, because limiter lowers by one the order of
accuracy of the right-hand side of Equation (16). As a result, the compact scheme is no longer
fourth-order accurate in space. Compared with the Ribner theory and the Hermit-6 results.
TVD and MUSCL schemes exhibit very large discrepancies on both magnitudes and phase
(Figure 16). These discrepancies increase when the grid refinement is coarser. MUSCL scheme
predicts an oscillating pressure distribution along the acoustic wave (Figure 16). These
oscillations are due to a numerical artifact induced by the compressive behavior of the limiter
(Minmod b=4).

Figure 16. Comparison with the Ribner theory on the circumferential pressure profiles provided with the
Hermit-6, TVD-HY, CP-TVDM and MUSCL schemes on the coarse grid (101×101) (left) and the fine

grid (201×201) (right).
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In conclusion, to capture and advect low amplitude phenomena, such as acoustic waves, it
seems necessary to employ at least third-order accurate shock-capturing schemes without an
explicit limiter. However, the role played by the limiter in such calculations is important since
the MUSCL scheme exhibits a strange behavior though it is a biased third-order accurate
scheme.

4. CONCLUSIONS

The assessment of the efficiency and performances of some popular shock-capturing schemes
for DNS has been performed on three two-dimensional free flows at moderate Reynolds
numbers. Four classes of shock-capturing schemes have been considered. TVD, MUSCL,
Compact and ENO schemes. The evaluation of the diffusive and dispersive properties of each
scheme has been performed by simulating the advection of a vortex in a uniform free flow. The
numerical dissipation has been estimated by measuring the minimum of pressure in the vortex
core and the maximum of the vertical velocity. The capability of each scheme to capture a
shock and to reproduce the mechanisms of vorticity production during the interaction of the
shock with inhomogeneities of the flow has been analyzed by simulating the interaction of a
weak shock with a temperature spot. The efficiency of each scheme has been assessed by
simulating the vorticity production by baroclinic effect during this interaction. The capability
of each scheme to generate and propagate low amplitude waves such as acoustic waves has
been investigated by considering the interaction of a weak shock with a vortex. The pressure
profiles along the acoustic wave have been compared to that predicted by the Ribner theory.

For the three test cases considered, the results obtained by using the shock-capturing
schemes have been compared to data obtained by FRS computations based on a sixth-order
accurate Hermitian scheme.

The second-order Upwind-TVD scheme using the Van-Leer Harmonic limiter exhibits an
overall large numerical diffusion. Due to the limiter effect this scheme is sensitive to grid
refinement. The results of the Compact TVDM scheme are disappointing since they do not
improve those of the second-order accurate TVD scheme. This is due to the limiter function
which, in some regions of the flow, reduces by one the order of accuracy of the discrete Euler
fluxes in the right-hand side of (16). As a result the CP-TVDM scheme is no longer
fourth-order accurate in space.

MUSCL-3, using a Minmod limiter function with a coefficient b=4, yields anomalous
results when the flow involves shock waves; in particular, it produces low frequency oscilla-
tions just downstream of the shocks. MUSCL-3 overpredicts the production of vorticity and
affects the propagation of acoustic waves. This numerical artifact is attributed to the
compressive behavior of Minmod (b=4) limiter. However, equipped with the Minmod limiter
(b=4), MUSCL-3 gives results comparable with ENO-3 in shock-free cases.

All the ENO schemes give results in closer agreement with FRS data than the TVD and
CP-TVDM ones. The generic ENO schemes exhibit a slightly diffusive behavior; though it
predicts well the propagation of acoustic waves. Results are improved by using the MENO
version (MENO-4) with no extra computational cost compared with ENO-3. Nevertheless,
MENO-4 exhibits a slightly antidiffusive behavior, which can lead to overprediction of velocity
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or underprediction of pressure. The best results were obtained by WENO-5 at a computational
cost similar to that of the generic ENO scheme. Moreover, WENO-5 results are not very
sensitive to grid refinement (within the range studied herein).

All the investigated ENO schemes yield accurate results for the selected relevant test cases.
However, in our calculations the number of grid points to represent the wave lengths (spot
diameter or vortex core radius) was large, and the capability of ENO schemes to produce
satisfactory results on coarse grids still needs to be accessed, especially concerning the LES of
compressible flows.
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